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Spectral analysis of correction techniques for linear colliders
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Spectral analysis has been used to study emittance growth due to chromatic effects in future linear colliders.
This formalism allows us to study the effects of static initial misalignments, as well as the effects of magnet
displacements produced by ground motion, the latter described adequately by the two-dimensional power
spectrumP(w,k). The effectiveness of correction techniques, envisaged in long linacs to recover the small
required emittance, has been also evaluated by this spectral approach. For illustration, analytical predictions for
the “one-to-one” algorithm and the “adaptive alignment” method are given and compared to numerical
simulations [S1063-651X97)12303-Q

PACS numbgs): 41.75.Ht, 29.1#w, 29.27-a, 41.85-p

I. INTRODUCTION dilution is simply given by an integral involving the power
spectrum of the displacements and a spectral response func-

Ground motion is of major concern in future linear col- tion describing the transport line. We will show that this
liders because it will displace focusing magnets, which, informalism can be extended also for the case when correction
turn, will dilute the beam emittance in the linac through dis-techniques become operative, provided that the correlation
persive effects. Beam-based alignment technicuéswill between space harmonics, which now arises, is correctly
recover either the proper alignment of the elements or theaken into account. We focus herein on the chromatic effects
“gold” trajectory, which minimizes dispersion, nevertheless induced by misalignments of focusing magnets and neglect
steering feedback loops are needed to control the chromatiany wakefield effects. Both effects, which we assume small,
dilution on a continuous-time basis against the ground moean be considered uncoupled and then can be studied sepa-
tion. The beam-based alignment correction, which requiregately.
measurements of the beam orbit with different quadrupole In Fig. 1, showing some focusing quadrupoles of a linac,
settings, will be used periodically, with some rather longx;(t)=x(t,s;) is the transverse position of théh element,
time intervals, while steering algorithms will be applied con-measured relatively to the reference liagjs the BPM read-
tinuously in between. ing, s; is the longitudinal positios;=iL, L is the quadrupole

In this paper, a spectral analysis is presented which evaluspacing. Ifx,,{t,s) is the coordinate measured in an inertial
ates the final dispersive error for initial misalignments, butframe and the reference line passes through the entrance,
also after alignment or trajectory correction techniques. Furthen the transverse positiongt,s) =Xadt,S) — Xapd t,0).
thermore, this spectral approach makes use of the two- Dispersion arises because particles having different ener-
dimensional power spectrufi2,3], which gives a complete gies in the bunch are deflected differently by the misaligned
description of ground motion—including time and space dequadrupoles. Although the offset at the exit(t) is not
pendence of displacements—and permits not only statigtrictly a linear function of the relative energy deviation
(e.g., initial misalignment but also dynamic study of the we will consider henceforth only the linear term of the dis-
effectiveness of alignment algorithms. For illustration, thepersion, defined ag,(t)=dx* (t)/dé, for the estimation of
method is applied first to the so-called “one-to-one” algo- the chromatic dilution.
rithm (see[4], for example, when simple steering dipoles | et b; andd; be the first derivatives of the beam offset

are used or when quadrupoles can be mechanically movegng of the beam dispersion at the exit of the linac with re-
second to the “adaptive alignment” method proposed by

Balakin [5]. Analytical predictions giving the quadrupole
spectra and the final dispersion are compared to numerical
simulations. The limitations of the presented spectral ap-

proach are finally discussed. J\

a
i+1

Il. SPECTRAL ANALYSIS OF CHROMATIC DILUTION

Beam emittance growth, induced by chromatic effects, | Ta
can be studied with the help of the spectral approach. When ‘" Xy
X
1

we consider static initial misalignments of focusing magnets,
or displacements produced by ground motion, the chromatic

*Permanent address: Branch of the Institute of Nuclear Physics, FIG. 1. Misaligned quadrupoles. Hexgis quadrupole displace-
142284 Protvino, Moscow Region, Russia. ment relative to the reference line aadis the BPM reading.
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spect to the displacement of the elementThe final offset, ) ® o s
measured relatively to the reference line, and the dispersioﬁﬂx(t)):Ei > didjJ_wf_m<x(t1k1)X*(tvk2)>(e Bi—1)
are given by the summation of all the deflections experienced J

by the beam , dk; dk,
X(e keSj—1)—— ——. (8
N 27 27
X* ()= RygXin (1) + Rlin'nj(t)JriZl bix;(t), (1) This general form allows the eventual dependence of spatial

harmonics. We first consider the case of initial misalignment
or (and ground motion, where all spatial harmonics are as-

N sumed to be independent. The dispersive error becomes

nx(t):Tllﬁxinj(t)+T126Xi,nj(t)+i21 dixi(t). 2

(7(0)=2 2 did f P(t,kxei“i—1><e-ik51—1>§—k.
HereN is the total number of quadrupoles aRdandT are b o 729)
the first- and second-order total matrixes of the considered
transport line. The valuegy,(t) andx;,(t) are the position One can rewrite Eq9) in the way, which separate lattice
and the angle of the injected beam at the entrance. properties and displacements properties
. We assume t_hat the beam is injecte_d along the reference dk
line. In practice it means that the beam is steered through the *
center (E)f some element, say a beam position monitor, glaced <77>2‘(t)>: f_wP(t,k)G(k)ﬁ. (10

at the entrance, i.e., @=0. In this casex;,;(t)=0 and
Xi(t)=0 and the formulagl) and (2) can be rewritten in Here G(k) is the so-called spectral response function of the

this way: considered transport line
N G(k)=g2(k)+g3(k), (11)
X*(1)=2, bixi(t), 3 with
N N
N ge(k)=2, di[cogks)—1] and gy(k)=>, disin(ks,).
nx<t>=i§1 dixi(t). €y =1 =1 1

The spatial power spectrum of displacemex{t,s) is de-

Assuming that the beam can be realigned at the exit, WE ed as

will now focus on the final dispersion only. While the mean

value of the dispersiof,(t)), averaged on realizations, is 1
zero, the mean squared value, which we denote as dispersive P(t,k)= lim ZX(t,k)X*(t,k)
error, is nonzero: Lo

i 1 fﬁ/z g 2

= — t, —iks ;

<n§(t)>:2— E didj<xi(t)xj(t)>- (5) Llinwﬁ‘ —L/zx( sje S
[

it is a real function.
The displacemenk(t,s) is a two-dimensional function of The power spectrum of displacemeft,k) can be eas-
time and position along the linac. One can introduce thdly found as far as initial misalignment or ground motion are
spatial harmonic(t,k) of wave numbek=2s/\, with A concerned. For example, assume that the focusing elements

(13

the spatial period of displacements: are perfectly aligned along the reference linetat0 and
then are moved by ground motion. The evolution of the
L2 _ power spectrum can be described by the following expres-
x(t,k)zf x(t,s)e”'ksds. (6) sion[2,3:
—LI2
P(t,k) = f " Plwk)2[1 do 14
The functionx(t,k) is complex, with a symmetrical real part (tk)= —w (0. k)2] ‘COS“””]E’ (14

and an asymmetrical imaginary part, relativekte 0. The
displacemenk(t,s) can be written using the back transfor- Where the two-dimensional power spectr#tw,k) charac-
mation: terizes ground motion properties, including both spatial and
temporal correlation information. Several model$giv,k),
o _ dk based on measured data, have been proposga]inThe
x(t,8)= j x(t,k)(e*s—1) —, (7)  diffusive ground motion, leading to large displacements after
- 2m long time intervals, is usually described by th&TL law”
[6], which suggests that the square of the relative misalign-
which ensures that at the entrandgé,s=0)=0. The disper- ment of two points is proportional to their separatiorand
sive error(5) can then be written elapsed timeT. Its power spectrun®P(w,k) is simply
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A
P(a),k)zm. (15)

10
The coefficient A is site dependent, the values
A=10"%"1um? s~ m~! have been observed. We will use
the value A=10°um?s Im~?! for the numerical ex-
amples throughout the paper. Though any typeP6b, k)

can be considered, we will keep only this particular motion
for the estimation of the dispersive error throughout this pa-
per.

When correction procedures interfere, spatial harmonics
can be not any more independent and correlation of phase
between two harmonics with different wave numbers can
arise. In principle, the phase of a givkth harmonics may
be linked to all other harmonics. This correlation, which is
lost through the power spectru(t,k), may change the
result significantly. Therefore one has to use expresgon FIG. 2. Spectral response functio@gk) (solid line) and abso-
in the general case. lute value ofG(k) (dashed line, this function is negatjvécODO

We will see below that for a regular linac with constant linac, L=10 m,N=128, u= /2.
quadrupole spacing, the formula(8) may be simplified for
some correction techniques, in particular for those we havéiore details A typical plot of G(k) andG(k) is shown in
considered in this paper. In fact, phase correlation will apFig. 2. In this example we choose a regular linac without
pear in such a way that onkx(t,k)x* (t,k—kmna)) in for-  acceleration, the quadrupole spacirrg 10 m, the number of
mula (8) should be taken into account, thus all functionsquadrupolesN=128, the phase advance per FODO cell is
become one dimensional. Thus, in this simplified case, the.= 7/2, and the beta function is maximum in odd quadru-
dispersive error is poles (FODO represents “focusing lens—open space—

6

0.03 0.04 0.05

(1/m)

0.02
/A

2 _ Kmax~ Kmin %
(m(t)=2]| [P(tK)G(K) +P(tK)G(K 5,
min (16)

where we used the notations

P(t,k)= lim Ex(t,k)x*(t,—E)z lim lx(t,k)x(t,TZ)
L— o0 L £—>00£
17
and
G(K)=gc(K)ge(K) — gs(K)gs(K). (18)

In our caseP(t,k) is a real function.

Here and belovk=k,,,—k and the valué,,,= =/L cor-
responds to the shortest wavelengtk 2L, which can be
produced by misalignments of an infinite regular lattice with
spacingL. We take into account in E¢16) that the range of
integration ork is limited in practice. For the finite regular
lattice with spacind_,

I(min< | k| < kmax_ kmin ) (19)
wherek = 27/(NL). Taking integral16) only for positive
k we doubled the result.

One should note that the ground motion spectrum ma)P

have anyk and the limits in Eq(10) are infinite, while the

spectrum of quadrupole displacements is defined only in a

certain finite range. This peculiarity is not a contradiction,

defocusing lens—open spage”

In short, the spectral response functiddék) and G(k)
describe the properties of the focusing channel, while the
power P(t,k) and the self-correlatiorP(t,k) spectra will
depend on the applied method of correction, initial misalign-
ment, and ground motion.

Ill. SPECTRAL PROPERTIES OF CORRECTION
TECHNIQUES

Our aim now is to describe an alignment procedure in
terms of evolution of spatial harmonics and then to apply the
spectral formalism to different correction techniques.

We consider first the well known “one-to-one” steering
algorithm, where beam position monot&PM) readings are
used to steer the beam through BPM centers. A variant of
this scheme, where the quadrupoles are moved towards the
beam line instead of using dipole correctors, is also studied.
The “shunt” technique, which can alternatively be used to
suppress the BPM offsets, is also discussed. Finally the
“adaptive alignment” method proposed by BalaKis] will
be considered. This method uses BPM readings to repeti-
tively realign quadrupoles to some smooth line.

Some notations have to be introduced before going
through the correction methods in more detail. We define
X(0)(K) as thekth harmonics of the vector of initial quadru-
ole displacements in thie domain; it can be complex. In
pace domain its components are real values,

X(0)i*COgKS + ¢).

S

(20

because, as we will see, all harmonics of ground motioriThis vector describes the initial misalignment of the ele-
effectively act as if their wavelength values belong to thements at=0. The correction is performed &t At and the

finite allowed band.

resulting quadrupole displacements just after correction are

Spectral functions can be easily calculated numericallydescribed by harmonics (k). The value just before cor-

and even analytically in some casésxe Appendix A for

rection isx(; (k). If correction procedures will be repeated
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Initial
/ Qisplacements

@ <|X<1)|2>:ri<|xo|2>+?2<|X A +r¥12ZH+TX[Z 3

@ BPM errors

+r3(|€%)+T, <|§|2>+r1<l/f(1l!/(1)>
T ¥)- (22
’r\; We use abbreviations such as=r,(k) and ?2=r2(E)

henceforth. For the self-correlation spectrum one gets

Final displacements (X(1)3<'(1)> = r1r2<|x(0) | 2> 4T o |7(0)|2> +rar4(|Z| 2>

13T 4([Z 12) +rar f{| ]2 +T 3T 4(|€]%)
FIG. 3. Evolution of spectral harmonics due to alignment pro- _ ~
* -~ *
cedure. 110y W) F a2y dh)) - (23

Similar equations can be written after many correction
. o) L X processesn(>1). We have to take into account, however,
iteration index, which is connected to the time throughthat BPM offset errors of different are totally correlated,
th=nAt. BPM resolution errors are uncorrelated, and ground motion

The vector of the BPM offset errors, relative to the quad “terms () of differentn may have some correlation.
rupole centers, can be described by the harmoa(és. We assume Gaussian distributions for the initial misalign-
These quantities are identical for any iterationbut are  ments and BPM errors and will use spectra instead of vari-
different for different realizations. Last, the vector of BPM ances. The Spectra of initial misa"gnmentS, static BPM er-
resolution errors, due to measurement noise, consists of thers (offsety, and stochastic BPM resolution errors are,
harmonicsé () (k). Itis different for differentn, but its spec-  respectively,
tral properties remain the same.

iteratively, one will havex,(k), where the index is the

The effect of ground motion will be given by the harmon- Pini(K)=Lo5=L{|x)|?, (29
ics (n)(k) of the vector of quadrupole displacements be-
tween the times,_;=(n—1)At andt,=nAt. Poi(k)=Lo2e=L(|Z?), (25)
The correction techniques, which are investigated in this
study, introduce phase correlations only between harmonics Pres(k)zLorzesz L{|&?). (26)

k and k=knax—K, in the following way. If a term with a ) )

phaseq arises in thekth harmonics after correction, some ~ The term corresponding to ground motiaQy;,;)(k)
term with a phase- ¢ arises also in thith harmonics. An  — L{(¥)(K) #(;)(K)) can be expressed with the help of Eq.
extension to the more general case can of course be done fgr4)‘ We use the identity

other correction methods, which could introduce more com-

. 1
plex phase correlations. _ (xl—xz)(x3—x4):E[(xl—le)er(xz—xg)z—(xl—xg,)2
We have to express now the change of the harmonics of
elements displacement due to a correction procedsee — (Xo—X4)?] (27)

Fig. 3). The coefficients 1(k) andr,(k) relate thekth har-
monics of the quadrupole position after correction to theto expandzp(,)z,bm, remembering that the valu$(n)(k) in

kth andkth harmonics in the initial state. The coefficients the k domain and the valugy(t,,s) — Xapdtn—1,5) in the
r4(k) and r4(k) give the contribution of thekth and kth  Space domain are equivalent. The ground motion term is then
harmonics of the BPM errors to thkth harmonics of the -

guadrupole position after correction. In our case these coef- Q(i,j)(k):f P(w,k){cog{w(ti—tj)]

ficients are real. Th&th harmonics of the quadrupole dis- -

placement just after the first correctiontatAt, can then be

+co ti_4—ti_1)|—co ti—ti_
written as the following: foltiat-y)]-cogwlti=t-y)]

dw
_Coiw(ti—l_tj)]}ﬁ- (28

X (1) (K) = 1(K)X0)(K) + T 2(K) X5, (K) +3(k) z(K)
This expression assumes thatcan run from—o to +oo,

+1(K)Z* (K) + 1 5(K) €y (K) + r4(k)§ (k) while the regular lattice with spacirlg cannot produce har-
. monics with very short or very long wavelength. The spec-
+13(K) gy (K) + (k) 9 (K. (21 trum of quadrupole displacements has therefore a bounded

range. The harmonics of ground motion have hence to be

redistributed within the allowed band. For instance, the har-
Assuming that the only correlation originates from the cor-monics with large wave numbenk,.,+Ak, wherem is a
rection procedure, the variance of the quadrupole positiopositive integer, will effectively appear &s,,,—Ak. On the
after the first correction is other hand, it is known that long wavelengths do not affect
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b) 2Xi X
AX;=——— and AX;,=AX_1=———. (31
LK; LK
______ e N 1]
~ ) Here K, is the r,; coefficient of the quadrupole transport
1+1 i-1 ! matrix. The algorithm can therefore be expressed
: : : : 1
FIG. 4. The one-to-one alignment technique with steering by the Xi—X;+ m(in —Xi11—Xj—1)- (32
I

previous quadrupoléa), and with changing of position of mis-

aligned quadrupoléb). We assume a regular FODO Iattice where the signs of the

quadrupole strengths alternake,= —K;, ;. We can write it

the beam quality, and the harmonics wjtj) <k, can be alternatively,

simply neglected. The ground motion term is then
K=K cogsjm/L)=K cogKmaSi), (33

o

wheres;=iL are the locations of the quadrupoles. Taking
X;=cosks+ ¢) and using the identity

max

* dk

dw
x2[1-codwAt)Jcogw(ti—t) 15—, (29 cos ks + ) C0% KaySi) = COL KinaySi — kS — @), (34)

where we assumed that the time intemxak=t,—t, _, is con-  We note that &«th harmonics of the initial misalignment will
stant. For the special case of thaTL law,” the expression ~Produce two harmonics of quadrupole displacements after
(29) can be given in a closed form, the correctionkth and K« k) th with opposite phase. The
coefficientsr (k) andr,(k), showing the change of the har-
monicsk and connection with the harmoni&s,,,— k of the
Qqi,jy(k)= (1/kmax+ 1/k?) quadrupole displacements after correction, are

X(li=j+af+fi-ji=1=2li-j). <0 r2(k)=1 and r(k) = &[1—cos{kL)]. (35
In the following sections, a few correction techniques are

studied in more detail. The expressions for the resultingrhe coefficients 3(k) andr4(k), showing the effect of BPM

power spectra of quadrupole displacements after correctiogrrors, are

as well as the final dispersive errors, are calculated. Finally,

the method is illustrated by some actual examples, which are

all based on the same fictitious linac: the number of quadru-

polesN=1024, quadrupole spacing=10 m, phase advance

«=90°, no acceleration, the beta function has maximum inThe power spectrum of quadrupole displacements after cor-

odd quadrupoles, and the beta function at the gxit 5.86 rﬁction, with ground motion, described by thATL law,” is

m. thus

For the sake of simplicity, all the following consideration

rs(k)=1 and r4(k)=§[1—cos(kL)]. (36)

of correction techniques is made for the case when there is 2 2
no acceleration in the linac. The realistic case, however, can P(k)= L(‘T'n'+‘79fr) 1+ LK [1+cos{kL)]
also be considered within the same approach.
2
1
2
IV. “ONE-TO-ONE” CORRECTION TECHNIQUES TAAL |2t P [1+coskL)]

The “one-to-one” algorithm consists in zeroing the BPM
measurements. This can be done by steering the beam by > i+_21_ _ (37)
means of dipole correctoffig. 4(a)] or by moving the mis- k?  Kmax
aligned quadrupoles towards the beldfig. 4(b)]. These two
methods give different results, and they are studied sepdn the same way, the self-correlation spectrum is
rately.

P(k)=L (o5 + 4+2AA 1 coskL)]| 3+ 2
A. “One-to-one” by steering (k) =L (i Uer’)LK [1-coskL)] k? kzax

It is more convenient to our formalism to replace deflec- 1
tions given by dipole correctors by displacements of the as- +[1+coskL)]| =+ | |. (39)
sociated quadrupoles. k?  Khax

If we suppose théth quadrupole is misaligned, three ad-
ditional angles are needed to realign the beam. The equivd-he quantitys,,, means here the total rms BPM error, in-
lent quadrupole displacements, which should be subtracteguding both BPM offset and BPM resolution
from their initial positions, are then (02, =02+ 02).
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FIG. 5. Initial power spectrunfa), and spectra after one-to-one
correction by steering, power spectrifl), and self-correlatiorc). FIG. 6. Power spectrum just befoe) and after one-to-one
Simulations in comparing with analytical resulsmooth curves ~ correction by steerinf(b) power and(c) self-correlation. Ground
Initial misalignmento,; =100 xm. No BPM errors. The spectra Motion by “ATL law” with AAtL=10""?m?. No initial misalign-
here, as well as on the other pictures showing spectra, are doublégent, no BPM errors.
in comparison with formulas in the text.

ai:_Kirllz. (42)

One can note that, without ground motion, the power
spectrum after correction does not grow for snkalineaning  This follows from the algorithm of the correction — the
that the smooth deviation of the line of quadrupoles, a typicahngle caused by displaced quadrupole is corrected, thus the
feature of the other correction methods, is not significant fotermt,,5 vanishes.
this correction technique. On the other hand, the power spec- The dispersive error can then be calculated with the for-
trum of the quadrupole displacements is larger after correcmulas(B7) or (39), they give the same result. For example,
tion than before correction. Fig. 7 shows the results obtained with an analytical formula

Taking ground motion into account, we reasonably as{straight line$ and with numerical simulations with particle
sumed that the time required for the change of the correctaracking (symbolg: on the fictitious linac, previously de-
settings is smaller than the characteristic time of the emitscribed; with initial misalignment solelycurvesa and b,
tance growth due to ground motion. When the correctiorbefore and after correctiognand with ground motion solely
procedure is iteratively repeated, the spectra are still given bycurvesc and d, before and after correctipnThese last
the expression$37) and (38), but the ground motion terms curves can help to choose the needed repetition rate of the
have to be multiplied byr. A few examples of spectra ob- realignment of the linac, once the maximum allowed emit-
tained with analytical formulas and compared to numericatance growth is fixed. The analytical results exhibit the fol-
simulations are shown in Fig. 5 and Fig. 6. lowing approximate dependencies before and after correc-

The dispersive error can be found by use of E8%) and tion, respectively:
(38), provided that injection conditions are correctly speci-

fied (see Appendix B Alternatively, one can show that for (%)=~ (ofi+0.5AAtL)0.3N?, (43
the “one-to-one” corrections the dispersive error can be 5 5 5
written ()~ (ot oet0.5AAtL)1.2N. (44

) Kmao.. N dk These equations are in fact particular cases of the following
<7lx(t)>=2f PGk 5, (39  general expressions, which can be obtained using(E9).
Koi w . . . . .
min and formulas shown in Appendix A. The dispersive error in

2 - . the linac without corrections is
where G(k) and P(t,k) are the effective spectral response

function and the effective spectrum of quadrupole displace-
ments before correction, respectively. TB¢k) is built ac-
cording to Egs.(11) and (12) with new dispersive coeffi-
cients

< 7]5) ~ ( Oﬁ]i + G-grr+ At L/Z)
X ( Bmaxt Bmin) BuK?tarf(u/2)N3/16.  (45)

The dispersive error in the linac with corrections, at the mo-
ment just after correction, is

di=di+(2d;+di 1+ di 1)/ (LK), (40)
B . . <77>2<>%(0'51i+O'érr"—Atl—/z)(lgmax"'IBmin)IBNKZNM'- (46)
andP(t,k) is given by
P(t,k)=L(o2+02,)+AAt(1K>+1Kk2,). (41) These expressions are valid without acceleration, however

similar formulas can also be found with the help of Appen-

One can show that the new dispersive coefficients are dix A taking acceleration in the linac into account. Contribu-
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FIG. 7. Dispersive error for the “one-to-one” correction by
dipole steering(a) and(b) with initial misalignmento;,;=100 um
solely (before and after correctipn(c) and(d) with “ ATL” ground

FIG. 8. Power(a) and self-correlatior{b) spectra after one-to-
one correction by quadrupole movinge,= 100 pwm.

motion solely (before and after correctign =10 1?

m2/(AL). [cog mi)cogks + ¢)

KL
2[1+cogkL)]

. : . _ +i kL+¢)+(i—1 .
tion of the dispersive error to the beam emittance can be cost 288 Jcos4)]
estimated by use of the dispersive emittance error, defined 28om the spectral point of view the constant or linearion

_ 2
& disp= ( )/ Bn - terms can be neglected. The coefficients accounting for the

~ We see from Eqs(45) and(46) that “ATL" ground mo-  quadrupole displacements caused by initial misalignments
tion causes linear growth of the dispersive error with time. Ifyre zero:

corrections are applied, the dispersive error is reduced by the
factor of N2 approximately, but still grows linearly with
time. Thus, after some time, some beam-based alignment
technique should be used to realign the quadrupoles. The coefficients accounting for the BPM errors are
The linear model, chosen for our consideration, imposes
certain limits for the presented results. In particular, the
beam energy spreadl,= op/p is limited. It is easy to see,

Xj=—cogks+ ¢)—

(48)

ry(k)=0, ryk)=0. (49

ra(k)=—1, ruk)= (50

considering higher-order terms in Eq#2) and (A3), that
the linear approximation is valid untd,<1/N. In the case

when the “one-to-one” correction has been applied, how-

~ 2[1+cogkL)]

The power spectrum of quadrupole displacement after cor-
rection can be easily deduced,

ever, the second- and next-order terms vanish, thus we have

almost no limit in this cases,<1. This conclusion is con-
firmed by particle tracking for our fictitious linac: the linear
model gives good results faf,<0.003 without correction
and for 6,<0.3 with correction.

B. “One-to-one” by quadrupole moving

(KL)?

P(k)ZLtTgrr 1+m . (51)

In the same way, the self-correlation spectrum is

KL

— 2
P(k)—LO’e”SiW,

(52

The beam will now be passed through the center of the

ith BPM by moving theith quadrupole. The resulted quad-
rupole misalignments will not depend on the initial quadru-
pole positions, but only on the total BPM errorsalfis here
the total BPM error of thgth element, then the position of
theith element after alignment will be

i—1

Xi=—ai+21 KJaJ(S,—SJ) (47)
=

Considering one harmonics of the BPM errors
a;=cosks+ ¢) and performing summation in E¢47), one
gets

whereao,, is again the total BPM error, which includes offset
and resolution errorso3,= o4t 02). An example of the
spectra is shown in Fig. 8.

Since the spectra after correction do not depend on initial
position of quadrupoles, and with the assumption that the
time required for moving the quadrupoles is smaller than the
characteristic time of emittance growth due to ground mo-
tion, the correction and the ground motion are here com-
pletely dissociated.

In order to find the dispersion correctly, one needs to take
into account all terms in Eq48), see Appendix B. In the
same way as before, one can alternatively introduce new
coefficients
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N
. 1
d=—d+K X dj(sj—s) (53 AXi=Cozlai+1tai-1—a(2+KiL)]. (58)
j=i+1

The coefficient controls the velocity of convergence of the
algorithm. This procedure is normally repeated iteratively.

Let us suppose that only one quadrupole is misaligned
with the unity displacement;=1 and that the BPMs are
perfect, i.e., they have no offsets or measurement errors. One
can show that at the first iteration only three quadrupoles
have nonzero correction:

to build the effectiveG(k). The effective spectrum in this
case is

P(k)=Lo?2, (54)
We note that the new dispersive coefficients are again

di=—Kirl,, (55)

1 2
5 Co» AXiZECO' (59)

AXi—1=AXj4 1= — 3

for the same reasons as for the previous method.

The dispersive error can again be calculated with the hel
of the formulas(B7) or (39). Unlike the corrector steering
method, we note that the power spectrum after correctio
grows for smallk as 1k*, leading to a smooth deviation of 1
the quadrupoles line from their original position. It is also S X =X ).
seen, of course, directly from E8). In spite of this spec- X=X 3C0(2X(0)' Xon+17X()-1) (0
trum divergence, the answer for the dispersive error is finite - . )
because the bounds of integration are cutkaf, and The coefficients, accounting for the quadrupole displace-
Kmax— Kmin- Moreover, contribution of these tails mostly can- Ments caused by this correction, can then be deduced,
cels in Eq.(B7) during integration.

The analytical results, confirmed by particle tracking, ex- r(k)=1— Ec [1-cogkL)] and ry(k)=0. (61)
hibit the following approximate dependencies of the disper- ! 370 2 '
sive error after correction for our fictitious linac,

e position of thath quadrupole after the first iteration is
Q'h iti f thath d le after the first i ion i
I1|hen

Even after the first iteration, some harmonics, for which
(p2y~o2 1. N, (56)  r,;=0, will be damped completely. If the coefficieny is too
large (>3/2), the damping conditionr{<1) is no longer
which shows the same dependence on the BPM errors as thalid and the algorithm will finally diverge.
previous method. The previous formula is the particular case Let us assume now that all quadrupoles are perfectly

of the next general expression aligned but BPMs have errors. A harmonics of BPM signals,
a;=cosks+ ¢), gives the correction to be applied at the first
(7%)~ 05 Bmax Buin) BNKZN/A. (57)  iteration:

This formula was obtained by using E&9) and formulas of

Appendix A. As for the previous method, the expression is

valid until 6,=<1. L
One can note that the so-called “shunt” methagsed,

for example, to align the FFTB beam lii@]), which sup- ~ 3CoKiL cogks +4). (62)

presses effectively the BPM offsets, can be described by the

same equations. This method is rather a beam-based aligive note again that th&th harmonics of BPM errors will

ment technique and cannot be used directly as a continuougenerate two harmoni¢& and (K.,.— k) ] of quadrupole dis-

time feedback, because different quadrupole settings afnslacements after the first iteration. The coefficients account-

needed. It requires us to move a quadrupole in such a waipg for the BPM errors are then

that changing of its strength does not produce beam shift in

the next BPM. This procedure repeats step by step for all 2 1

quadrupoles and the final dispersive error is only limited by 3(k)=— 3Co[1—codkL)] and ry(k)=—ZCoKL. (63

the BPM resolution. If the relative strength changing is

k= 0KI/K, then the precision of cancelation of the BPM |t e consider now an arbitrary number of iterations, suc-

offset is oes/ (KL &) . The spectra of the quadrupoles after cegsive equations have to be written. We obtain forkife

alignment will be defined by Eqg#51), (52), (B14), or (54),  harmonics after thenth iteration (taking into account the
where the total BPM errors mean nowog, equalityr,=0)

=02 1+ /(KL 8)?].

A=~ 2o 1~ costkL)Jcosks + )

n n n
| n—i n—i=~ = n—i
V. THE “ADAPTIVE ALIGNMENT” METHOD X<n>(k)—f1Xo+i§1 r f32+i§1 r r4Z*+i§l re raég

The algorithm, proposed ifb], calculates from the read- n n
ings a; of three neighboring BPMs the change of position of +2 rgfrrvAgzci)Jrz rgf'fll/f(i)- (64)
the central quadrupole, i=1 =1
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FIG. 9. Power spectrum after first iteration of the “adaptive  FIG. 10. Power spectrum versus number of iterations for the
alignment” method, no BPM errors; numbers show the value of“adaptive alignment” method, with random and static BPM errors;
coefficientc,. Initial misalignmento,=100 xm. numbers show the number of iterations. Initial misalignment

opi=100 um, BPM errorso o= oor=10 pum.

The variance of th&th harmonics of the total quadrupole
displacement after theth iteration is then 1
K2 k)

max

n n
35, 3, o -As -+

1—r2n
i
1

<|x(n)|2>=r§”<|x0|2>+<|z|2)i2 2 i

If the coefficientr, is lower than 1 for any, then the
algorithm is converging and the power spectrum after an
IR infinite number of iterations can be explicitly expressed.
+([z |2>i21 Zl ri" T 4+<|§|2>2 ri" %3 Taking again the ATL law” for the ground motion, we
s obtain the following power spectrum:

Poff + I:)res
(1-r)? (1-r)

2
'y

e

2 2n— 2|""2
+([& >2 rin AT S Py (K) = (r24T2)

. (69

max

+§ Z rgnio 1<l/f(|)‘/’1)> (65) +AA’[(

The sums in Eq(65) represent geometric progressions andThe self-correlation spectrum is obtained in the same way:
can be calculated easily. The spectrum of self-correlation can
be found in a similar way. - - P ofe Pres
After simplifications, the power spectrum of quadrupole P(Oc)(k)=(r3r4+r4r3)( (1-r)(1-T7) + (-1, ))-
displacements is the following: v

(70
(1-r)? (1—r2m Figure 9 shows, for example, the power spectra given by
2n 1 1 . . . .
Pny=r1"Pini+ (r5+77) oﬁ(l_r1)2+Pres(1_ ?) simulations and by analytical expressiofsnooth curves
l

just after the first iteration. An initial quadrupole misalign-
n ment ofo,;=100 xm and no BPM errors were chosen. One
2 2n—i- lrlQ(I - (66) can see a clear divergence for harmonics with small wave-
- lengths when the control coefficieng is too large ¢&3/2).
An optimal value can also be deduced. One can show that
the ratio of the integral of initial spectrum to the integral of
the spectrum after first iteration has a maximuncgt 1.
1-rf\[1-T] We assume,=1 henceforth.
Pott 1—r. Power spectra with a different number of iterations are
! shown in Fig. 10, where, in addition to a quadrupole mis-
—(r. TN alignment @,,=100 um), BPM offset and resolution er-
1—(rqrq)
+Preg( —,,) ) (67) rors (oq%=0es=10 wm) have been introduced. As pre-
1-rqry dicted by Eq(66), the left side of the figure, i.e., for the long
wavelengths, is dominated by the effects of the offset errors,
For the special case, where théTL law” is used to de- while the right side, i.e., for short wavelengths, is dominated
scribe the ground motion, the last term in E66) is by the resolution errors of the BPMs. In Fig. 11, the ground

HM:

In the same way, the self-correlation is

Piny(K)=(rarg+r4r3)
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FIG. 11. Power spectrum versus number of iterations for the
“adaptive alignment” method; numbers show the number of itera- FIG. 12. Spectrum of self correlatioR(k) for the “adaptive
tions, ground motion by ATL law” with AAtL=10"12m2 No  alignment” method. Numbers show number of iterations. Static and
initial misalignment, no BPM errors. random erroro, =10 um, o,es—10 wm. No initial misalign-

ment, no ground motion.

motion solely is taken into account, without initial quadru-
pole misalignment and without BPM errors. For these two 3[1—coq wAt)]
figures, we observe that short wavelength harmonics are F(w,k)=m. (73
quickly stabilized, while more time is required for the long 0
WaVelength harmonics. For two cases, for offset BPM errorq’his function shows again that frequenc'msg 1/At of the
or for ground motion, the power spectrum after a big enougthower spectrunP(w,k) damped asw?, while smallk in-
number of iterations scales I|kekf/at Sma”k, like for the creased as k; due to considered a“gnment technique_
“one-to-one” correction by moving the quadrupoles. In this y(,,, k)=0 for this method. One can also see that for the
case, however, it is not the offset of the last quadrupoles, butgne.-to-one” by steeringF (w,k) =2 and for the “one-to-
the offset of the central quadrupoles that is responsible fopne» by movingF(w,k)=0.

such behavior of the spectrum. , When all power spectra are available, one can use Eq.
Figure 12 shows the self-correlation spectrumforadlffer—(16) with spectral function based on E(L2) to find the
ent number of iterationgwithout initial misalignment and  gispersive error. The results of simulatidpsrticle tracking
ground motion, but with BPM errors q=oes=10 um). i comparing with analytical results are shown in Fig. 13 and
Numerical simulations and analytical formulésmooth Fig. 14.
curves are in excellent agreement. . One can see that the effect of initial misalignments is
When displacements are produced by ground motiojjamped after some tens of iteration, the effect of ground
solely, the equilibrium valugi.e., att—o or when no de- motion stabilizes after a few iterations, the effect of BPM
pendence om occurg of the dispersive error can be ex- resolution errors is almost constant, and the effect of BPM
pressed in terms of two other function8(w,k) and  offset errors stabilizes after thousands of iterations.
H(w,k), which are the characteristic functions of the correc-  The equilibrium value of dispersive error exhibits the fol-
tion method: lowing numerical dependence:

(72)e~(0.3302,+0.0502%+0.2AAtL)NS.  (74)

e N T
The analytical expression can also be found by using formu-
® las of Appendix A, however it is too long to be shown here.
+g(k)H(“"k)]P(“"k)Z on (7)) The linear approximation is valid untii,<1/N in this case.
As we see, the dispersive error after the “adaptive align-

One can find the functions(w,k) and H(w,k) for this ment” still scales likeN3, as it did before alignment, while

alignment method. Comparing this with E@6), changing the “one-to-one” methods Q'Véﬂ>2<>°<N- The reason is that
limits of sums, and neglecting fast oscillating terms will for “one-to-one” the orbit is really controlled, it is kept
yield in the following expression: close to the quadrupol@r BPM) centers, while the “adap-
tive alignment” smooths the beamline but does not control
o the orbit. One can imagine that in practice the angle and
F(w,k)=2, ri[1-coqwAt)], (72)  position of the injected beam could be adjusted in the “adap-
i=0 tive alignment” in order to make use of the smoothness of
the aligned line, thus decreasing the dispersive error.
where we assume that contribution |&f> k.« can be ne- In contrast to the “one-to-one” by steering method,
glected. It is then ground motion does not cause permanent growth of disper-
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FIG. 14. Dispersive error versus number of iterations for the
“adaptive alignment” method, no BPM error&) Ground motion
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the casdc). initial misalignment, and BPM errorg.s= o,=10 um.

FIG. 13. Dispersive error versus number of iterations for the
“adaptive alignment” method. (@) Initial misalignment

sive error if the “adaptive alignment” is continuously ap- resonances, and values in the resonances of the spectral func-

plied. Thus, this method can be used solely, it does not retions.
quire periodic realignments of the linac by a special In the thin lens approximation the quadrupole displaced
procedure. However, this method may require more precisBY X; produces an angular kick= —K;x; and the resulting
BPMs. offset at the exit is<* = —r' K;x; , whereK; is the integrated
strength of the quadrupol@n our definition it equals ,; of
VI. CONCLUSION the quadrupole matrjxr, is the coefficient of the transfer
matrix from theith element to the exit. Therefore the coef-

We have shown that the chromatic dilution in future lin- ficient b; is equal to
ear colliders can be calculated analytically taking all impor-
tant effects—namely, initial misalignment, any sophisticated b= —Kiri,. (A1)
ground motion, and alignment procedures—into account.

The used spectral approach is the natural extension of thene coefficientd, is the derivative of Eq(A1) with respect
P(w,k) spectrum concept, which was previously introducedyq the energy deviatios:
to describe ground motion.

A few correction methods, such as well known *“one-to- d d
one” techniques, as well as the more recent “adaptive align- d; =d—5bi :d_é(
ment” method have been investigated in the framework of
the presented approach. The analytical results are in perfe\(lzvthiCh is equal to
agreement with the results obtained by particle tracking. A
regular linac, having a constant spacing of the focusing ele- di= K (1t —t ) (A3)
ments, is the only limitation we saw in this spectral method. N
The presented results will help us to study alignment tech- P -
niques of the future linear collider, to choose a proper techy\’,here"126 IS Fhe coefficient of the §econd-order transfer ma-
nique, and determine its necessary paraméggirs trix from theith element to the exit. _

The most important advantage of the spectral approach is The coefficientd; andd; follow certain rules, which can

the possibility of evaluating the performance of correction€ found in the next way. By considering a rigid displace-
techniques dynamically. ment of the whole beam line, it is easy to find the identity

s 5)) , (A2)

N N
ACKNOWLEDGMENTS S b=1-Ry; and D di=—Tys. (A4)
~ ~
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Vladimir Shiltsev, and Nick Walker for useful discussions. o, the other hand. one can show by tilting the whole beam
line by a constant angle that the coefficients satisfy for thin

APPENDIX A lenses the following identity:
In this section some properties of the spectral response N N
functlons are considered. Pre_s_ented formulas aII_o_vv us to find E b+ Rip=Set and E disi+T126=0, (AS)
approximate values of coefficients and d;, positions of i=1 i=1
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wheres,,; is the coordinate of the exit and we assume that
the entrance coordinate is zesy=0. These rules allow us gs(k)~2 Ki VB BnSIn(¥;)
to find behavior of the spectral functiof2) at smallk: =1

0(k—0)~O(K?) (A6) Vo

S — / rw2>

X[cogks)—1]. (A14)

tan(u/2)

1+(N—|) tar(y,)

) sin(ks;),
and
gs(k—0)~— kTt O(k3). (A7)

Behavior at the right allowed edde— #/L can be found by
considering the equivalent latti¢®OFO instead of FODO, (gne can see that these functions have resonances at the fol-
for example at k— 0 (FOFO represents focusing lens— —OPeN|owing wave numbers:
space—focusing lens—open space

Let us consider now the case of the regular FODO linac

=i *
and assume that the quadrupole strength is KL=mj=pi2, (AL5)

wherej is an integer. Only four resonances fit into the al-

— _ )i
Ki=K(=1) (A8) lowed band k| < /L, the first resonance
and the position of the quadrupole is kL= /2 (A16)
si=iL, (A9)  the second resonance
wherei=1, ... N, the entrance position is zero, and the exit KoL=m—pul2, (A17)

position isNL. We denoteu to be the betatron phase ad-
vance of the FODO cell, which satisfies to the following g4 also the symmetrical ones for negativéThe values of

equation: spectral functions at these resonances can be easily found.
Let us split the sum in EqA14) in two parts, with odd index
2 sin(u/2)=|K]|L. (A10)0 i=2m—-1 and with even index i=2m, where
m=1, ... N/2 (assuming thaN is even. The values at the
The matrix element!, from theith quadrupole to the exit is first resonance are then
given by )
gc(k1) =SiN(Nu/2) (v oggt U even T COLN /2) (Woggt Weven) »
. Yi
1= NBibBnsin() - (A12) gs(ke) =~ COIN4/2) (v ot Veven
+SIN(N w/2) (Wodqgt Weven - (A18)

where ;= u/2(N—1i) is the phase advance between itte
guadrupole and the exi; and By are the beta functions at At the second resonance,
theith quadrupole and at the exit, respectively, ands the

relativistic Lorentz factor. Oc(ko) =SiN(Nw/2) (= v oggt Veven

The values of the beta functions for the regular FODO
linac are the following: + CONu/2) (= WoggtWeven s

P _ L (AL2) gs(kz) = — cog Nu/2) (v ogg— Veven
e tar(;dZ)[llsin(MIZ)]' +Sin(NM/2)(Wodd_Wever)- (Alg)

If K; is positive (i.e., the quadrupole is defocusinghen Here
Bi= Bmin @andvice versa

Since the energy dependence comes mainly from the N/2
phase advance and the beta function variation can be ne- oddN_Kodelgod 2 Yam- 1

glected, the coefficiertt, s is given by
N/2

) ) t 12 m
t|126~ -r I]_2( N—i) % (A13) Vever™ 5 KevenV BeverBn 2 72 (A20)

The spectral functiong&l2) can then be explicitly written: and
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N/2

1 B 1
Wogc Stan(11/2)K oagyBoadBn 21 (N—2m+1) % X2 =Xt (X0~ X (BS)
m= N
1 N/2 The dispersion after correction is then given by
[Y2
Weyerr™ Stan u/2)K eveny BeverBn 2 (N—2m) == N
2 m=1 N alg
(A21) 77x:T116X(1—)0+i21 diX(1)i
The resonance values @f(k) andg(k) are then the follow- )[d 1 2 d, B6)
ing: + (X(1-y0— X(1— +—|+—.
ing: (X(1-)0=X(1-)1)| 0 LK, LK,
G(ky) = (0 oddt Veven*+ (Woga Weven s The dispersive error will be finally given by the following
5 5 expression:
G(K2) = (v odd— Veven " T (Wodd— Weven }
2 . max_ *min
Gk0) = G(Kp) = = Vgt U Woggt W (A22) i)=2[ ™ PG+ Ak

min

Behavior in the small vicinity of the peaks can also be found. d
One can show finally that the peaks can be considered as +Pinj(k)Ginj(k)]§’ (B7)
rectangular ones with full width

where the spectral functiorid(k) andg(k) are based on Eq.

2 B2) and the additional functions are defined as the follow-
Ak=—. (A23) ( .)
NL ing:
2 2 1
APPENDIX B Pij(K)=L(0in+ oer) + ALt {7+ 12— ], (B
ma

We saw in the main text that from the spectral point of
view an alignment procedure can be considered in terms of Ginj(K)=af+a3+2(g;c+0s,8), (B9)
evolution of spatial harmonics. For the “one-to-one” tech-
niques the positions of several first quadrupoles of the linad/here
after alignment do not follow exactly the algorith@1),
which describes evolution of harmonics. Nevertheless these 01=Tiet
details of alignment procedures can also be taken into ac-
count within a spectral approach.

o) ok
d, l*[?ﬁ +~ERI[1—coikLﬂ,

It is more convenient in this case to start from qp=|dy| 1+ i i dz sin(kL), (B10)
LK, = LK,
N
7= Taagkini(D) + 2, diXi(0), (B1) and

c=0e(K) +r(K)ge(K),
where the injected angle is assumed to be zero. The spectral de 2109

functions are given also by Eqggll) and(18), but they are s= —gs(k)+rz(k)gS(F). (B11)
composed of parts, which are defined in a slightly different
way than in the main text: Similar consideration can be made for the “one-to-one”

N by quadrupole moving. If one has one harmonics of the BPM
. errors a;=cosks+¢), then the displacements after align-
gc(k)zg1 dicogks) and gs(k>=i§1 disinks). (B2 ment are given by Eq48). First, in order to simplify calcu-
lations, let us rewrite Eq48) in the form that will give the

We start from the “one-to-one” by steering. Let us sup- Same answer for the dispersion, but will not have linear

pose thatx;_y is the position of theith quadrupole just terms:

before correction and it corresponds to a single harmonics. In

order to find the positions after correctiag;, one should  x.= —cogks + ¢)—

N

( cog mi)cog ks + @)

apply first the algorithm(21) to x(;_);. It will give x?'l%i , 2[1+codkL)]

which can be composed of two harmonics already. Then the T1o6

injection position and the positions of the first two quadru- —coq ¢)+ T [cog ¢)+codkL+ @)]]. (B12)
116

poles should be specified in the following way:

_ B One can see now that we can use &) with fictitious Xy
Xinj = X(1)0= X(1-)0> B3 gefined as

|
X1)1=X{1 T (X(1-)0— X(1-)1)

142 (B4)  xy= KL ag| 22 1|4 q, 1120 (B13)
LK./’ N 2[1+cogkL)]| "\ LTy T
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The final answer for the dispersive error will be given again qo=—r4(K) T1p6/L sin(kL),
by the expressioriB7), where the additional functions are
defined as the following:

and
Pin(K) =L o2 (B14)
The functionG;y (k) is given by Eq(B9) with the following c=—0c(k) +r4(k)ge(k),
coefficients:
Q1= —r4(K)(T126/L—T119) —r4(K)T1p6/L cogkL), (B15 s= _gs(k)_rzt(k)gs&)- (B16)
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