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Spectral analysis of correction techniques for linear colliders

Andrey Sery* and Alban Mosnier
Commissariat a` l’Energie Atomique, Division des Sciences de la Matie`re, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

~Received 24 June 1996!

Spectral analysis has been used to study emittance growth due to chromatic effects in future linear colliders.
This formalism allows us to study the effects of static initial misalignments, as well as the effects of magnet
displacements produced by ground motion, the latter described adequately by the two-dimensional power
spectrumP(v,k). The effectiveness of correction techniques, envisaged in long linacs to recover the small
required emittance, has been also evaluated by this spectral approach. For illustration, analytical predictions for
the ‘‘one-to-one’’ algorithm and the ‘‘adaptive alignment’’ method are given and compared to numerical
simulations.@S1063-651X~97!12303-0#

PACS number~s!: 41.75.Ht, 29.17.1w, 29.27.2a, 41.85.2p
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I. INTRODUCTION

Ground motion is of major concern in future linear co
liders because it will displace focusing magnets, which,
turn, will dilute the beam emittance in the linac through d
persive effects. Beam-based alignment techniques@1# will
recover either the proper alignment of the elements or
‘‘gold’’ trajectory, which minimizes dispersion, neverthele
steering feedback loops are needed to control the chrom
dilution on a continuous-time basis against the ground m
tion. The beam-based alignment correction, which requ
measurements of the beam orbit with different quadrup
settings, will be used periodically, with some rather lo
time intervals, while steering algorithms will be applied co
tinuously in between.

In this paper, a spectral analysis is presented which ev
ates the final dispersive error for initial misalignments, b
also after alignment or trajectory correction techniques. F
thermore, this spectral approach makes use of the t
dimensional power spectrum@2,3#, which gives a complete
description of ground motion—including time and space
pendence of displacements—and permits not only st
~e.g., initial misalignment!, but also dynamic study of the
effectiveness of alignment algorithms. For illustration, t
method is applied first to the so-called ‘‘one-to-one’’ alg
rithm ~see@4#, for example!, when simple steering dipole
are used or when quadrupoles can be mechanically mo
second to the ‘‘adaptive alignment’’ method proposed
Balakin @5#. Analytical predictions giving the quadrupol
spectra and the final dispersion are compared to nume
simulations. The limitations of the presented spectral
proach are finally discussed.

II. SPECTRAL ANALYSIS OF CHROMATIC DILUTION

Beam emittance growth, induced by chromatic effec
can be studied with the help of the spectral approach. W
we consider static initial misalignments of focusing magne
or displacements produced by ground motion, the chrom
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dilution is simply given by an integral involving the powe
spectrum of the displacements and a spectral response
tion describing the transport line. We will show that th
formalism can be extended also for the case when correc
techniques become operative, provided that the correla
between space harmonics, which now arises, is corre
taken into account. We focus herein on the chromatic effe
induced by misalignments of focusing magnets and neg
any wakefield effects. Both effects, which we assume sm
can be considered uncoupled and then can be studied s
rately.

In Fig. 1, showing some focusing quadrupoles of a lin
xi(t)5x(t,si) is the transverse position of thei th element,
measured relatively to the reference line,ai is the BPM read-
ing, si is the longitudinal positionsi5 iL , L is the quadrupole
spacing. Ifxabs(t,s) is the coordinate measured in an inert
frame and the reference line passes through the entra
then the transverse position isx(t,s)5xabs(t,s)2xabs(t,0).

Dispersion arises because particles having different e
gies in the bunch are deflected differently by the misalign
quadrupoles. Although the offset at the exitx* (t) is not
strictly a linear function of the relative energy deviationd,
we will consider henceforth only the linear term of the d
persion, defined ashx(t)5dx* (t)/dd, for the estimation of
the chromatic dilution.

Let bi and di be the first derivatives of the beam offs
and of the beam dispersion at the exit of the linac with

s, FIG. 1. Misaligned quadrupoles. Herexi is quadrupole displace
ment relative to the reference line andai is the BPM reading.
3558 © 1997 The American Physical Society
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56 3559SPECTRAL ANALYSIS OF CORRECTION TECHNIQUES . . .
spect to the displacement of the elementi . The final offset,
measured relatively to the reference line, and the disper
are given by the summation of all the deflections experien
by the beam

x* ~ t !5R11xinj~ t !1R12xinj8 ~ t !1(
i 51

N

bixi~ t !, ~1!

hx~ t !5T116xinj~ t !1T126xinj8 ~ t !1(
i 51

N

dixi~ t !. ~2!

HereN is the total number of quadrupoles andR andT are
the first- and second-order total matrixes of the conside
transport line. The valuesxinj(t) andxinj8 (t) are the position
and the angle of the injected beam at the entrance.

We assume that the beam is injected along the refere
line. In practice it means that the beam is steered through
center of some element, say a beam position monitor, pla
at the entrance, i.e., ats50. In this casexinj(t)50 and
xinj8 (t)50 and the formulas~1! and ~2! can be rewritten in
this way:

x* ~ t !5(
i 51

N

bixi~ t !, ~3!

hx~ t !5(
i 51

N

dixi~ t !. ~4!

Assuming that the beam can be realigned at the exit,
will now focus on the final dispersion only. While the mea
value of the dispersion̂hx(t)&, averaged on realizations,
zero, the mean squared value, which we denote as dispe
error, is nonzero:

^hx
2~ t !&5(

i
(

j
didj^xi~ t !xj~ t !&. ~5!

The displacementx(t,s) is a two-dimensional function o
time and position along the linac. One can introduce
spatial harmonicsx(t,k) of wave numberk52p/l, with l
the spatial period of displacements:

x~ t,k!5E
2L/2

L/2

x~ t,s!e2 iksds. ~6!

The functionx(t,k) is complex, with a symmetrical real pa
and an asymmetrical imaginary part, relative tok50. The
displacementx(t,s) can be written using the back transfo
mation:

x~ t,s!5E
2`

`

x~ t,k!~eiks21!
dk

2p
, ~7!

which ensures that at the entrancex(t,s50)50. The disper-
sive error~5! can then be written
on
d
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^hx
2~ t !&5(

i
(

j
didjE

2`

` E
2`

`

^x~ t,k1!x* ~ t,k2!&~eik1si21!

3~e2 ik2sj21!
dk1

2p

dk2

2p
. ~8!

This general form allows the eventual dependence of spa
harmonics. We first consider the case of initial misalignm
or ~and! ground motion, where all spatial harmonics are a
sumed to be independent. The dispersive error becomes

^hx
2~ t !&5(

i
(

j
didjE

2`

`

P~ t,k!~eiksi21!~e2 iksj21!
dk

2p
.

~9!

One can rewrite Eq.~9! in the way, which separate lattic
properties and displacements properties

^hx
2~ t !&5E

2`

`

P~ t,k!G~k!
dk

2p
. ~10!

HereG(k) is the so-called spectral response function of
considered transport line

G~k!5gc
2~k!1gs

2~k!, ~11!

with

gc~k!5(
i 51

N

di@cos~ksi !21# and gs~k!5(
i 51

N

disin~ksi !.

~12!

The spatial power spectrum of displacementsx(t,s) is de-
fined as

P~ t,k!5 lim
L→`

1

L x~ t,k!x* ~ t,k!

5 lim
L→`

1

LU E2L/2

L/2

x~ t,s!e2 iksdsU2

; ~13!

it is a real function.
The power spectrum of displacementsP(t,k) can be eas-

ily found as far as initial misalignment or ground motion a
concerned. For example, assume that the focusing elem
are perfectly aligned along the reference line att50 and
then are moved by ground motion. The evolution of t
power spectrum can be described by the following expr
sion @2,3#:

P~ t,k!5E
2`

`

P~v,k!2@12cos~vt !#
dv

2p
, ~14!

where the two-dimensional power spectrumP(v,k) charac-
terizes ground motion properties, including both spatial a
temporal correlation information. Several models ofP(v,k),
based on measured data, have been proposed in@3#. The
diffusive ground motion, leading to large displacements a
long time intervals, is usually described by the ‘‘ATL law’’
@6#, which suggests that the square of the relative misali
ment of two points is proportional to their separationL and
elapsed timeT. Its power spectrumP(v,k) is simply
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3560 56ANDREY SERY AND ALBAN MOSNIER
P~v,k!5
A

v2k2 . ~15!

The coefficient A is site dependent, the value
A5102561mm2 s21 m21 have been observed. We will us
the value A51025mm2 s21 m21 for the numerical ex-
amples throughout the paper. Though any type ofP(v,k)
can be considered, we will keep only this particular moti
for the estimation of the dispersive error throughout this
per.

When correction procedures interfere, spatial harmon
can be not any more independent and correlation of ph
between two harmonics with different wave numbers c
arise. In principle, the phase of a givenkth harmonics may
be linked to all other harmonics. This correlation, which
lost through the power spectrumP(t,k), may change the
result significantly. Therefore one has to use expression~8!
in the general case.

We will see below that for a regular linac with consta
quadrupole spacingL, the formula~8! may be simplified for
some correction techniques, in particular for those we h
considered in this paper. In fact, phase correlation will
pear in such a way that onlŷx(t,k)x* (t,k2kmax)& in for-
mula ~8! should be taken into account, thus all functio
become one dimensional. Thus, in this simplified case,
dispersive error is

^hx
2~ t !&52E

kmin

kmax2kmin
@P~ t,k!G~k!1P~ t,k!G~k!#

dk

2p
,

~16!

where we used the notations

P~ t,k!5 lim
L→`

1

L x~ t,k!x* ~ t,2 k̃!5 lim
L→`

1

L x~ t,k!x~ t,k̃!

~17!

and

G~k!5gc~k!gc~ k̃!2gs~k!gs~ k̃!. ~18!

In our caseP(t,k) is a real function.
Here and belowk̃5kmax2k and the valuekmax5p/L cor-

responds to the shortest wavelengthl52L, which can be
produced by misalignments of an infinite regular lattice w
spacingL. We take into account in Eq.~16! that the range of
integration onk is limited in practice. For the finite regula
lattice with spacingL,

kmin,uku,kmax2kmin , ~19!

wherekmin52p/(NL). Taking integral~16! only for positive
k we doubled the result.

One should note that the ground motion spectrum m
have anyk and the limits in Eq.~10! are infinite, while the
spectrum of quadrupole displacements is defined only i
certain finite range. This peculiarity is not a contradictio
because, as we will see, all harmonics of ground mot
effectively act as if their wavelength values belong to t
finite allowed band.

Spectral functions can be easily calculated numeric
and even analytically in some cases~see Appendix A for
-
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more details!. A typical plot of G(k) andG(k) is shown in
Fig. 2. In this example we choose a regular linac witho
acceleration, the quadrupole spacingL510 m, the number of
quadrupolesN5128, the phase advance per FODO cell
m5p/2, and the beta function is maximum in odd quadr
poles ~FODO represents ‘‘focusing lens–open spac
defocusing lens–open space’’!.

In short, the spectral response functionsG(k) and G(k)
describe the properties of the focusing channel, while
power P(t,k) and the self-correlationP(t,k) spectra will
depend on the applied method of correction, initial misalig
ment, and ground motion.

III. SPECTRAL PROPERTIES OF CORRECTION
TECHNIQUES

Our aim now is to describe an alignment procedure
terms of evolution of spatial harmonics and then to apply
spectral formalism to different correction techniques.

We consider first the well known ‘‘one-to-one’’ steerin
algorithm, where beam position monotor~BPM! readings are
used to steer the beam through BPM centers. A varian
this scheme, where the quadrupoles are moved towards
beam line instead of using dipole correctors, is also stud
The ‘‘shunt’’ technique, which can alternatively be used
suppress the BPM offsets, is also discussed. Finally
‘‘adaptive alignment’’ method proposed by Balakin@5# will
be considered. This method uses BPM readings to rep
tively realign quadrupoles to some smooth line.

Some notations have to be introduced before go
through the correction methods in more detail. We defi
x(0)(k) as thekth harmonics of the vector of initial quadru
pole displacements in thek domain; it can be complex. In
space domain its components are real values,

x~0!i}cos~ksi1f!. ~20!

This vector describes the initial misalignment of the e
ments att50. The correction is performed att5Dt and the
resulting quadrupole displacements just after correction
described by harmonicsx(1)(k). The value just before cor
rection isx(12)(k). If correction procedures will be repeate

FIG. 2. Spectral response functionsG(k) ~solid line! and abso-
lute value ofG(k) ~dashed line, this function is negative!. FODO
linac, L510 m,N5128,m5p/2.
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56 3561SPECTRAL ANALYSIS OF CORRECTION TECHNIQUES . . .
iteratively, one will havex(n)(k), where the indexn is the
iteration index, which is connected to the time throu
tn5nDt.

The vector of the BPM offset errors, relative to the qua
rupole centers, can be described by the harmonicsz(k).
These quantities are identical for any iterationn, but are
different for different realizations. Last, the vector of BP
resolution errors, due to measurement noise, consists o
harmonicsj (n)(k). It is different for differentn, but its spec-
tral properties remain the same.

The effect of ground motion will be given by the harmo
ics c (n)(k) of the vector of quadrupole displacements b
tween the timestn215(n21)Dt and tn5nDt.

The correction techniques, which are investigated in t
study, introduce phase correlations only between harmo
k and k̃5kmax2k, in the following way. If a term with a
phasef arises in thekth harmonics after correction, som
term with a phase2f arises also in thek̃th harmonics. An
extension to the more general case can of course be don
other correction methods, which could introduce more co
plex phase correlations.

We have to express now the change of the harmonic
elements displacement due to a correction procedure~see
Fig. 3!. The coefficientsr 1(k) and r 2( k̃) relate thekth har-
monics of the quadrupole position after correction to
kth and k̃th harmonics in the initial state. The coefficien
r 3(k) and r 4( k̃) give the contribution of thekth and k̃th
harmonics of the BPM errors to thekth harmonics of the
quadrupole position after correction. In our case these c
ficients are real. Thekth harmonics of the quadrupole dis
placement just after the first correction, att5Dt, can then be
written as the following:

x~1!~k!5r 1~k!x~0!~k!1r 2~ k̃!x~0!
* ~ k̃!1r 3~k!z~k!

1r 4~ k̃!z* ~ k̃!1r 3~k!j~1!~k!1r 4~ k̃!j~1!
* ~ k̃!

1r 1~k!c~1!~k!1r 2~ k̃!c~1!
* ~ k̃!. ~21!

Assuming that the only correlation originates from the c
rection procedure, the variance of the quadrupole posi
after the first correction is

FIG. 3. Evolution of spectral harmonics due to alignment p
cedure.
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^ux~1!u2&5r 1
2^ux~0!u2&1 r̃ 2

2^ux̃~0!u2&1r 3
2^uzu2&1 r̃ 4

2^uz̃ u2&

1r 3
2^uju2&1 r̃ 4

2^u j̃u2&1r 1
2^c~1!c~1!

* &

1 r̃ 2
2^c̃~1!c̃~1!

* &. ~22!

We use abbreviations such asr 25r 2(k) and r̃ 25r 2( k̃)
henceforth. For the self-correlation spectrum one gets

^x~1!x̃~1!&5r 1r 2^ux~0!u2&1 r̃ 1r̃ 2^ux̃~0!u2&1r 3r 4^uzu2&

1 r̃ 3r̃ 4^uz̃ u2&1r 3r 4^uju2&1 r̃ 3r̃ 4^u j̃u2&

1r 1r 2^c~1!c~1!
* &1 r̃ 1r̃ 2^c̃~1!c̃~1!

* &. ~23!

Similar equations can be written after many correcti
processes (n.1). We have to take into account, howeve
that BPM offset errors of differentn are totally correlated,
BPM resolution errors are uncorrelated, and ground mot
termsc (n)(k) of different n may have some correlation.

We assume Gaussian distributions for the initial misalig
ments and BPM errors and will use spectra instead of v
ances. The spectra of initial misalignments, static BPM
rors ~offsets!, and stochastic BPM resolution errors ar
respectively,

Pini~k!5Ls ini
2 5L^ux~0!u2&, ~24!

Poff~k!5Lsoff
2 5L^uzu2&, ~25!

Pres~k!5Ls res
2 5L^uju2&. ~26!

The term corresponding to ground motionQ( i , j )(k)
5L^c ( i )(k)c ( j )* (k)& can be expressed with the help of E
~14!. We use the identity

~x12x2!~x32x4!5
1

2
@~x12x4!21~x22x3!22~x12x3!2

2~x22x4!2# ~27!

to expandc ( i )c ( j )* , remembering that the valuec (n)(k) in
the k domain and the valuexabs(tn ,s)2xabs(tn21 ,s) in the
space domain are equivalent. The ground motion term is t

Q~ i , j !~k!5E
2`

`

P~v,k!$cos@v~ t i2t j !#

1cos@v~ t i 212t j 21!#2cos@v~ t i2t j 21!#

2cos@v~ t i 212t j !#%
dv

2p
. ~28!

This expression assumes thatk can run from2` to 1`,
while the regular lattice with spacingL cannot produce har
monics with very short or very long wavelength. The spe
trum of quadrupole displacements has therefore a boun
range. The harmonics of ground motion have hence to
redistributed within the allowed band. For instance, the h
monics with large wave numbermkmax1Dk, wherem is a
positive integer, will effectively appear askmax2Dk. On the
other hand, it is known that long wavelengths do not aff

-
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3562 56ANDREY SERY AND ALBAN MOSNIER
the beam quality, and the harmonics withuku,kmin can be
simply neglected. The ground motion term is then

Q~ i , j !~k!5E
2`

` S P~v,k!12LE
kmax

`

P~v,k!
dk

2p D
32@12cos~vDt !#cos@v~ t i2t j !#

dv

2p
, ~29!

where we assumed that the time intervalDt5t i2t i 21 is con-
stant. For the special case of the ‘‘ATL law,’’ the expression
~29! can be given in a closed form,

Q~ i , j !~k!5
ADt

2
~1/kmax

2 11/k2!

3~ u i 2 j 11u1u i 2 j 21u22u i 2 j u!. ~30!

In the following sections, a few correction techniques a
studied in more detail. The expressions for the result
power spectra of quadrupole displacements after correc
as well as the final dispersive errors, are calculated. Fina
the method is illustrated by some actual examples, which
all based on the same fictitious linac: the number of quad
polesN51024, quadrupole spacingL510 m, phase advanc
m590°, no acceleration, the beta function has maximum
odd quadrupoles, and the beta function at the exitbN55.86
m.

For the sake of simplicity, all the following consideratio
of correction techniques is made for the case when ther
no acceleration in the linac. The realistic case, however,
also be considered within the same approach.

IV. ‘‘ONE-TO-ONE’’ CORRECTION TECHNIQUES

The ‘‘one-to-one’’ algorithm consists in zeroing the BP
measurements. This can be done by steering the beam
means of dipole correctors@Fig. 4~a!# or by moving the mis-
aligned quadrupoles towards the beam@Fig. 4~b!#. These two
methods give different results, and they are studied se
rately.

A. ‘‘One-to-one’’ by steering

It is more convenient to our formalism to replace defle
tions given by dipole correctors by displacements of the
sociated quadrupoles.

If we suppose thei th quadrupole is misaligned, three a
ditional angles are needed to realign the beam. The equ
lent quadrupole displacements, which should be subtra
from their initial positions, are then

FIG. 4. The one-to-one alignment technique with steering by
previous quadrupole~a!, and with changing of position of mis
aligned quadrupole~b!.
e
g
n,
y,
re
u-

n
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n

by

a-

-
s-

a-
ed

Dxi52
2xi

LKi
and Dxi 115Dxi 2152

xi

LKi
. ~31!

Here Ki is the r 21 coefficient of the quadrupole transpo
matrix. The algorithm can therefore be expressed

xi→xi1
1

LKi
~2xi2xi 112xi 21!. ~32!

We assume a regular FODO lattice, where the signs of
quadrupole strengths alternate,Ki52Ki 11. We can write it
alternatively,

Ki5K cos~sip/L !5K cos~kmaxsi !, ~33!

where si5 iL are the locations of the quadrupoles. Taki
xi5cos(ksi1f) and using the identity

cos~ksi1f!cos~kmaxsi !5cos~kmaxsi2ksi2f!, ~34!

we note that akth harmonics of the initial misalignment wil
produce two harmonics of quadrupole displacements a
the correction:kth and (kmax2k)th with opposite phase. The
coefficientsr 1(k) andr 2(k), showing the change of the ha
monicsk and connection with the harmonicskmax2k of the
quadrupole displacements after correction, are

r 1~k!51 and r 2~k!5
2

LK
@12cos~kL!#. ~35!

The coefficientsr 3(k) andr 4(k), showing the effect of BPM
errors, are

r 3~k!51 and r 4~k!5
2

LK
@12cos~kL!#. ~36!

The power spectrum of quadrupole displacements after
rection, with ground motion, described by the ‘‘ATL law,’’ is
thus

P~k!5L~s ini
2 1serr

2 !F11S 2

LK D 2

@11cos~kL!#2G
1ADtF S 1

k2 1
1

kmax
2 D 1S 2

LK D 2

@11cos~kL!#2

3S 1

k̃2
1

1

kmax
2 D G . ~37!

In the same way, the self-correlation spectrum is

P~k!5L~s ini
2 1serr

2 !
4

LK
1

2ADt

LK F @12cos~kL!#S 1

k2 1
1

kmax
2 D

1@11cos~kL!#S 1

k̃2
1

1

kmax
2 D G . ~38!

The quantityserr means here the total rms BPM error, in
cluding both BPM offset and BPM resolutio
(serr

2 5soff
2 1s res

2 ).

e
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56 3563SPECTRAL ANALYSIS OF CORRECTION TECHNIQUES . . .
One can note that, without ground motion, the pow
spectrum after correction does not grow for smallk, meaning
that the smooth deviation of the line of quadrupoles, a typi
feature of the other correction methods, is not significant
this correction technique. On the other hand, the power sp
trum of the quadrupole displacements is larger after corr
tion than before correction.

Taking ground motion into account, we reasonably a
sumed that the time required for the change of the corre
settings is smaller than the characteristic time of the em
tance growth due to ground motion. When the correct
procedure is iteratively repeated, the spectra are still given
the expressions~37! and ~38!, but the ground motion terms
have to be multiplied byn. A few examples of spectra ob
tained with analytical formulas and compared to numeri
simulations are shown in Fig. 5 and Fig. 6.

The dispersive error can be found by use of Eqs.~37! and
~38!, provided that injection conditions are correctly spe
fied ~see Appendix B!. Alternatively, one can show that fo
the ‘‘one-to-one’’ corrections the dispersive error can
written

^hx
2~ t !&52E

kmin

kmax
P̂~ t,k!Ĝ~k!

dk

2p
, ~39!

where Ĝ(k) and P̂(t,k) are the effective spectral respons
function and the effective spectrum of quadrupole displa
ments before correction, respectively. TheĜ(k) is built ac-
cording to Eqs.~11! and ~12! with new dispersive coeffi-
cients

d̂i5di1~2di1di 111di 21!/~LKi !, ~40!

and P̂(t,k) is given by

P̂~ t,k!5L~s ini
2 1serr

2 !1ADt~1/k211/kmax
2 !. ~41!

One can show that the new dispersive coefficients are

FIG. 5. Initial power spectrum~a!, and spectra after one-to-on
correction by steering, power spectrum~b!, and self-correlation~c!.
Simulations in comparing with analytical results~smooth curves!.
Initial misalignments ini5100 mm. No BPM errors. The spectra
here, as well as on the other pictures showing spectra, are dou
in comparison with formulas in the text.
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d̂i52Kir 12
i . ~42!

This follows from the algorithm of the correction — th
angle caused by displaced quadrupole is corrected, thus
term t126 vanishes.

The dispersive error can then be calculated with the f
mulas~B7! or ~39!, they give the same result. For examp
Fig. 7 shows the results obtained with an analytical form
~straight lines! and with numerical simulations with particl
tracking ~symbols!: on the fictitious linac, previously de
scribed; with initial misalignment solely~curvesa and b,
before and after correction!; and with ground motion solely
~curves c and d, before and after correction!. These last
curves can help to choose the needed repetition rate of
realignment of the linac, once the maximum allowed em
tance growth is fixed. The analytical results exhibit the f
lowing approximate dependencies before and after cor
tion, respectively:

^hx
2&'~s ini

2 10.5ADtL !0.3N3, ~43!

^hx
2&'~s ini

2 1serr
2 10.5ADtL !1.2N. ~44!

These equations are in fact particular cases of the follow
general expressions, which can be obtained using Eq.~39!
and formulas shown in Appendix A. The dispersive error
the linac without corrections is

^hx
2&'~s ini

2 1serr
2 1AtL/2!

3~bmax1bmin!bNK2tan2~m/2!N3/16. ~45!

The dispersive error in the linac with corrections, at the m
ment just after correction, is

^hx
2&'~s ini

2 1serr
2 1AtL/2!~bmax1bmin!bNK2N/4. ~46!

These expressions are valid without acceleration, howe
similar formulas can also be found with the help of Appe
dix A taking acceleration in the linac into account. Contrib

FIG. 6. Power spectrum just before~a! and after one-to-one
correction by steering@~b! power and~c! self-correlation#. Ground
motion by ‘‘ATL law’’ with ADtL510212 m2. No initial misalign-
ment, no BPM errors.led
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3564 56ANDREY SERY AND ALBAN MOSNIER
tion of the dispersive error to the beam emittance can
estimated by use of the dispersive emittance error, define
«disp5^hx

2&/bN .
We see from Eqs.~45! and~46! that ‘‘ATL’’ ground mo-

tion causes linear growth of the dispersive error with time
corrections are applied, the dispersive error is reduced by
factor of N2 approximately, but still grows linearly with
time. Thus, after some time, some beam-based alignm
technique should be used to realign the quadrupoles.

The linear model, chosen for our consideration, impo
certain limits for the presented results. In particular, t
beam energy spreaddp5dp/p is limited. It is easy to see
considering higher-order terms in Eqs.~A2! and ~A3!, that
the linear approximation is valid untildp&1/N. In the case
when the ‘‘one-to-one’’ correction has been applied, ho
ever, the second- and next-order terms vanish, thus we h
almost no limit in this case:dp&1. This conclusion is con-
firmed by particle tracking for our fictitious linac: the linea
model gives good results fordp,0.003 without correction
and fordp,0.3 with correction.

B. ‘‘One-to-one’’ by quadrupole moving

The beam will now be passed through the center of
i th BPM by moving thei th quadrupole. The resulted quad
rupole misalignments will not depend on the initial quadr
pole positions, but only on the total BPM errors. Ifaj is here
the total BPM error of thej th element, then the position o
the i th element after alignment will be

xi52ai1(
j 51

i 21

K jaj~si2sj !. ~47!

Considering one harmonics of the BPM erro
ai5cos(ksi1f) and performing summation in Eq.~47!, one
gets

FIG. 7. Dispersive error for the ‘‘one-to-one’’ correction b
dipole steering,~a! and~b! with initial misalignments ini5100 mm
solely ~before and after correction!, ~c! and~d! with ‘‘ ATL’’ ground
motion solely ~before and after correction!, t510212

m2/(AL).
e
as

f
he
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-
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e

-

xi52cos~ksi1f!2
KL

2@11cos~kL!#
@cos~p i !cos~ksi1f!

1 i cos~kL1f!1~ i 21!cos~f!#. ~48!

From the spectral point of view the constant or linear oni
terms can be neglected. The coefficients accounting for
quadrupole displacements caused by initial misalignme
are zero:

r 1~k!50 , r 2~k!50. ~49!

The coefficients accounting for the BPM errors are

r 3~k!521 , r 4~k!52
KL

2@11cos~kL!#
. ~50!

The power spectrum of quadrupole displacement after c
rection can be easily deduced,

P~k!5Lserr
2 S 11

~KL !2

4@12cos~kL!#2D . ~51!

In the same way, the self-correlation spectrum is

P~k!5Lserr
2 KL

sin2~kL!
, ~52!

whereserr is again the total BPM error, which includes offse
and resolution errors (serr

2 5s res
2 1soff

2 ). An example of the
spectra is shown in Fig. 8.

Since the spectra after correction do not depend on ini
position of quadrupoles, and with the assumption that
time required for moving the quadrupoles is smaller than t
characteristic time of emittance growth due to ground m
tion, the correction and the ground motion are here co
pletely dissociated.

In order to find the dispersion correctly, one needs to ta
into account all terms in Eq.~48!, see Appendix B. In the
same way as before, one can alternatively introduce n
coefficients

FIG. 8. Power~a! and self-correlation~b! spectra after one-to-
one correction by quadrupole moving.serr5100 mm.
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d̂i52di1Ki (
j 5 i 11

N

dj~sj2si ! ~53!

to build the effectiveĜ(k). The effective spectrum in this
case is

P̂~k!5Lserr
2 . ~54!

We note that the new dispersive coefficients are again

d̂i52Kir 12
i , ~55!

for the same reasons as for the previous method.
The dispersive error can again be calculated with the h

of the formulas~B7! or ~39!. Unlike the corrector steering
method, we note that the power spectrum after correc
grows for smallk as 1/k4, leading to a smooth deviation o
the quadrupoles line from their original position. It is al
seen, of course, directly from Eq.~48!. In spite of this spec-
trum divergence, the answer for the dispersive error is fin
because the bounds of integration are cut atkmin and
kmax2kmin . Moreover, contribution of these tails mostly ca
cels in Eq.~B7! during integration.

The analytical results, confirmed by particle tracking, e
hibit the following approximate dependencies of the disp
sive error after correction for our fictitious linac,

^hx
2&'serr

2 1.2N, ~56!

which shows the same dependence on the BPM errors a
previous method. The previous formula is the particular c
of the next general expression

^hx
2&'serr

2 ~bmax1bmin!bNK2N/4. ~57!

This formula was obtained by using Eq.~39! and formulas of
Appendix A. As for the previous method, the expression
valid until dp&1.

One can note that the so-called ‘‘shunt’’ method~used,
for example, to align the FFTB beam line@7#!, which sup-
presses effectively the BPM offsets, can be described by
same equations. This method is rather a beam-based a
ment technique and cannot be used directly as a continu
time feedback, because different quadrupole settings
needed. It requires us to move a quadrupole in such a
that changing of its strength does not produce beam shi
the next BPM. This procedure repeats step by step for
quadrupoles and the final dispersive error is only limited
the BPM resolution. If the relative strength changing
dK5dK/K, then the precision of cancelation of the BP
offset is s res/(KLdK). The spectra of the quadrupoles aft
alignment will be defined by Eqs.~51!, ~52!, ~B14!, or ~54!,
where the total BPM errors mean nowserr

2

5s res
2 @111/(KLdK)2#.

V. THE ‘‘ADAPTIVE ALIGNMENT’’ METHOD

The algorithm, proposed in@5#, calculates from the read
ingsai of three neighboring BPMs the change of position
the central quadrupole,
lp

n

e

-
-

the
e

s

he
n-
s-
re
ay
in
ll

y

f

Dxi5c0

1

3
@ai 111ai 212ai~21KiL !#. ~58!

The coefficientc0 controls the velocity of convergence of th
algorithm. This procedure is normally repeated iteratively

Let us suppose that only one quadrupole is misalign
with the unity displacementxi51 and that the BPMs are
perfect, i.e., they have no offsets or measurement errors.
can show that at the first iteration only three quadrupo
have nonzero correction:

Dxi 215Dxi 1152
1

3
c0 , Dxi5

2

3
c0. ~59!

The position of thei th quadrupole after the first iteration i
then

x~1!i5x~0!i2
1

3
c0~2x~0!i2x~0!i 112x~0!i 21!. ~60!

The coefficients, accounting for the quadrupole displa
ments caused by this correction, can then be deduced,

r 1~k!512
2

3
c0@12cos~kL!# and r 2~k!50. ~61!

Even after the first iteration, some harmonics, for whi
r 150, will be damped completely. If the coefficientc0 is too
large (.3/2), the damping condition (r 1,1) is no longer
valid and the algorithm will finally diverge.

Let us assume now that all quadrupoles are perfe
aligned but BPMs have errors. A harmonics of BPM signa
ai5cos(ksi1f), gives the correction to be applied at the fir
iteration:

Dxi52
2

3
c0@12cos~kL!#cos~ksi1f!

2
1

3
c0KiL cos~ksi1f!. ~62!

We note again that thekth harmonics of BPM errors will
generate two harmonics@k and (kmax2k)# of quadrupole dis-
placements after the first iteration. The coefficients accou
ing for the BPM errors are then

r 3~k!52
2

3
c0@12cos~kL!# and r 4~k!52

1

3
c0KL. ~63!

If we consider now an arbitrary number of iterations, su
cessive equations have to be written. We obtain for thekth
harmonics after thenth iteration ~taking into account the
equality r 250)

x~n!~k!5r 1
nx01(

i 51

n

r 1
n2 i r 3z1(

i 51

n

r 1
n2 i r̃ 4z̃* 1(

i 51

n

r 1
n2 i r 3j~ i !

1(
i 51

n

r 1
n2 i r̃ 4j̃ ~ i !* 1(

i 51

n

r 1
n2 i r 1c~ i ! . ~64!
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The variance of thekth harmonics of the total quadrupole
displacement after thenth iteration is then

^ux~n!u2&5r 1
2n^ux0u2&1^uzu2&(

i 51

n

(
j 51

n

r 1
2n2 i 2 j r 3

2

1^uz̃ u2&(
i 51

n

(
j 51

n

r 1
2n2 i 2 j r̃ 4

21^uju2&(
i 51

n

r 1
2n22i r 3

2

1^u j̃u2&(
i 51

n

r 1
2n22i r̃ 4

2

1(
i 51

n

(
j 51

n

r 1
2n2 i 2 j r 1

2^c~ i !c~ j !* &. ~65!

The sums in Eq.~65! represent geometric progressions an
can be calculated easily. The spectrum of self-correlation c
be found in a similar way.

After simplifications, the power spectrum of quadrupo
displacements is the following:

P~n!5r 1
2nPini1~r 3

21 r̃ 4
2!S Poff

~12r 1
n!2

~12r 1!2 1Pres

~12r 1
2n!

~12r 1
2!

D
1(

i 51

n

(
j 51

n

r 1
2n2 i 2 j r 1

2Q~ i , j ! . ~66!

In the same way, the self-correlation is

P~n!~k!5~r 3r̃ 41r 4r̃ 3!F PoffS 12r 1
n

12r 1
D S 12 r̃ 1

n

12 r̃ 1
D

1PresS 12~r 1r̃ 1!n

12r 1r̃ 1
D G . ~67!

For the special case, where the ‘‘ATL law’’ is used to de-
scribe the ground motion, the last term in Eq.~66! is

FIG. 9. Power spectrum after first iteration of the ‘‘adaptiv
alignment’’ method, no BPM errors; numbers show the value
coefficientc0. Initial misalignments ini5100 mm.
n

r 1
2(

i 51

n

(
j 51

n

r 1
2n2 i 2 jQ~ i , j !5ADtS 1

kmax
2 1

1

k2D r 1
2
12r 1

2n

12r 1
2 . ~68!

If the coefficientr 1 is lower than 1 for anyk, then the
algorithm is converging and the power spectrum after
infinite number of iterations can be explicitly expresse
Taking again the ‘‘ATL law’’ for the ground motion, we
obtain the following power spectrum:

P~`!~k!5~r 3
21 r̃ 4

2!S Poff

~12r 1!2 1
Pres

~12r 1
2! D

1ADtS 1

kmax
2 1

1

k2D r 1
2

12r 1
2 . ~69!

The self-correlation spectrum is obtained in the same wa

P~`!~k!5~r 3r̃ 41r 4r̃ 3!S Poff

~12r 1!~12 r̃ 1!
1

Pres

~12r 1r̃ 1!
D .

~70!

Figure 9 shows, for example, the power spectra given
simulations and by analytical expressions~smooth curves!
just after the first iteration. An initial quadrupole misalign
ment ofs ini5100 mm and no BPM errors were chosen. On
can see a clear divergence for harmonics with small wa
lengths when the control coefficientc0 is too large (.3/2).
An optimal value can also be deduced. One can show
the ratio of the integral of initial spectrum to the integral
the spectrum after first iteration has a maximum atc051.
We assumec051 henceforth.

Power spectra with a different number of iterations a
shown in Fig. 10, where, in addition to a quadrupole m
alignment (s ini5100 mm!, BPM offset and resolution er
rors (soff5s res510 mm! have been introduced. As pre
dicted by Eq.~66!, the left side of the figure, i.e., for the lon
wavelengths, is dominated by the effects of the offset err
while the right side, i.e., for short wavelengths, is domina
by the resolution errors of the BPMs. In Fig. 11, the grou

f
FIG. 10. Power spectrum versus number of iterations for

‘‘adaptive alignment’’ method, with random and static BPM erro
numbers show the number of iterations. Initial misalignme
s ini5100 mm, BPM errorss res5soff510 mm.
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56 3567SPECTRAL ANALYSIS OF CORRECTION TECHNIQUES . . .
motion solely is taken into account, without initial quadr
pole misalignment and without BPM errors. For these t
figures, we observe that short wavelength harmonics
quickly stabilized, while more time is required for the lon
wavelength harmonics. For two cases, for offset BPM err
or for ground motion, the power spectrum after a big enou
number of iterations scales like 1/k4 at smallk, like for the
‘‘one-to-one’’ correction by moving the quadrupoles. In th
case, however, it is not the offset of the last quadrupoles,
the offset of the central quadrupoles that is responsible
such behavior of the spectrum.

Figure 12 shows the self-correlation spectrum for a diff
ent number of iterations~without initial misalignment and
ground motion, but with BPM errorssoff5s res510 mm!.
Numerical simulations and analytical formula~smooth
curves! are in excellent agreement.

When displacements are produced by ground mo
solely, the equilibrium value~i.e., at t→` or when no de-
pendence onn occurs! of the dispersive error can be ex
pressed in terms of two other functionsF(v,k) and
H(v,k), which are the characteristic functions of the corre
tion method:

^hx
2&`5E

2`

` E
2`

`

@G~k!F~v,k!

1G~k!H~v,k!#P~v,k!
dv

2p

dk

2p
. ~71!

One can find the functionsF(v,k) and H(v,k) for this
alignment method. Comparing this with Eq.~66!, changing
limits of sums, and neglecting fast oscillating terms w
yield in the following expression:

F~v,k!5(
i 50

`

r 1
2i@12cos~vDt !#, ~72!

where we assume that contribution ofuku.kmax can be ne-
glected. It is then

FIG. 11. Power spectrum versus number of iterations for
‘‘adaptive alignment’’ method; numbers show the number of ite
tions, ground motion by ‘‘ATL law’’ with ADtL510212 m2. No
initial misalignment, no BPM errors.
o
re

s
h

ut
or

-

n

-

F~v,k!5
3@12cos~vDt !#

2c0@12cos~kL!#
. ~73!

This function shows again that frequenciesv!1/Dt of the
power spectrumP(v,k) damped asv2, while small k in-
creased as 1/k2 due to considered alignment techniqu
H(v,k)50 for this method. One can also see that for t
‘‘one-to-one’’ by steeringF(v,k)5` and for the ‘‘one-to-
one’’ by movingF(v,k)50.

When all power spectra are available, one can use
~16! with spectral function based on Eq.~12! to find the
dispersive error. The results of simulations~particle tracking!
in comparing with analytical results are shown in Fig. 13 a
Fig. 14.

One can see that the effect of initial misalignments
damped after some tens of iteration, the effect of grou
motion stabilizes after a few iterations, the effect of BP
resolution errors is almost constant, and the effect of BP
offset errors stabilizes after thousands of iterations.

The equilibrium value of dispersive error exhibits the fo
lowing numerical dependence:

^hx
2&`'~0.33s res

2 10.05soff
2 10.2ADtL !N3. ~74!

The analytical expression can also be found by using form
las of Appendix A, however it is too long to be shown her
The linear approximation is valid untildp&1/N in this case.

As we see, the dispersive error after the ‘‘adaptive alig
ment’’ still scales likeN3, as it did before alignment, while
the ‘‘one-to-one’’ methods givêhx

2&}N. The reason is that
for ‘‘one-to-one’’ the orbit is really controlled, it is kept
close to the quadrupole~or BPM! centers, while the ‘‘adap-
tive alignment’’ smooths the beamline but does not cont
the orbit. One can imagine that in practice the angle a
position of the injected beam could be adjusted in the ‘‘ada
tive alignment’’ in order to make use of the smoothness
the aligned line, thus decreasing the dispersive error.

In contrast to the ‘‘one-to-one’’ by steering method
ground motion does not cause permanent growth of disp

FIG. 12. Spectrum of self correlationP(k) for the ‘‘adaptive
alignment’’ method. Numbers show number of iterations. Static a
random errorsoff510 mm, s res510 mm. No initial misalign-
ment, no ground motion.
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3568 56ANDREY SERY AND ALBAN MOSNIER
sive error if the ‘‘adaptive alignment’’ is continuously ap
plied. Thus, this method can be used solely, it does not
quire periodic realignments of the linac by a spec
procedure. However, this method may require more pre
BPMs.

VI. CONCLUSION

We have shown that the chromatic dilution in future li
ear colliders can be calculated analytically taking all imp
tant effects—namely, initial misalignment, any sophistica
ground motion, and alignment procedures—into accou
The used spectral approach is the natural extension of
P(v,k) spectrum concept, which was previously introduc
to describe ground motion.

A few correction methods, such as well known ‘‘one-t
one’’ techniques, as well as the more recent ‘‘adaptive ali
ment’’ method have been investigated in the framework
the presented approach. The analytical results are in pe
agreement with the results obtained by particle tracking
regular linac, having a constant spacing of the focusing
ments, is the only limitation we saw in this spectral meth
The presented results will help us to study alignment te
niques of the future linear collider, to choose a proper te
nique, and determine its necessary parameters@8#.

The most important advantage of the spectral approac
the possibility of evaluating the performance of correcti
techniques dynamically.
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APPENDIX A

In this section some properties of the spectral respo
functions are considered. Presented formulas allow us to
approximate values of coefficientsbi and di , positions of

FIG. 13. Dispersive error versus number of iterations for
‘‘adaptive alignment’’ method. ~a! Initial misalignment
s ini5100 mm solely;~b! BPM random errorss res510 mm solely;
~c! BPM static errorssoff510 mm solely;~d! the limit atn→` of
the case~c!.
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resonances, and values in the resonances of the spectral
tions.

In the thin lens approximation the quadrupole displac
by xi produces an angular kicku52Kixi and the resulting
offset at the exit isx* 52r 12

i Kixi , whereKi is the integrated
strength of the quadrupole~in our definition it equalsr 21 of
the quadrupole matrix!; r 12

i is the coefficient of the transfe
matrix from thei th element to the exit. Therefore the coe
ficient bi is equal to

bi52Kir 12
i . ~A1!

The coefficientdi is the derivative of Eq.~A1! with respect
to the energy deviationd:

di5
d

dd
bi5

d

ddS Ki

11d
r 12

i ~d! D , ~A2!

which is equal to

di5Ki~r 12
i 2t126

i !, ~A3!

wheret126
i is the coefficient of the second-order transfer m

trix from the i th element to the exit.
The coefficientsbi anddi follow certain rules, which can

be found in the next way. By considering a rigid displac
ment of the whole beam line, it is easy to find the identit

(
i 51

N

bi512R11 and (
i 51

N

di52T116. ~A4!

On the other hand, one can show by tilting the whole be
line by a constant angle that the coefficients satisfy for t
lenses the following identity:

(
i 51

N

bisi1R125sexit and (
i 51

N

disi1T12650, ~A5!

e FIG. 14. Dispersive error versus number of iterations for
‘‘adaptive alignment’’ method, no BPM errors.~a! Ground motion
by ‘‘ ATL law’’ with ADtL510212 m2 solely; ~b! ground motion
and initial misalignment withs ini5100 mm; ~c! ground motion,
initial misalignment, and BPM errorss res5soff510 mm.
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wheresexit is the coordinate of the exit and we assume t
the entrance coordinate is zero,s050. These rules allow us
to find behavior of the spectral functions~12! at smallk:

gc~k→0!'O~k2! ~A6!

and

gs~k→0!'2kT1261O~k3!. ~A7!

Behavior at the right allowed edgek→p/L can be found by
considering the equivalent lattice~FOFO instead of FODO
for example! at k→0 ~FOFO represents focusing lens–op
space–focusing lens–open space!.

Let us consider now the case of the regular FODO lin
and assume that the quadrupole strength is

Ki5K~21! i ~A8!

and the position of the quadrupole is

si5 iL , ~A9!

wherei 51, . . . ,N, the entrance position is zero, and the e
position isNL. We denotem to be the betatron phase a
vance of the FODO cell, which satisfies to the followin
equation:

2 sin~m/2!5uKuL. ~A10!

The matrix elementr 12
i from thei th quadrupole to the exit is

given by

r 12
i 5Ab ibNsin~c i !Ag i

gN
, ~A11!

wherec i5m/2(N2 i ) is the phase advance between thei th
quadrupole and the exit,b i andbN are the beta functions a
the i th quadrupole and at the exit, respectively, andg i is the
relativistic Lorentz factor.

The values of the beta functions for the regular FOD
linac are the following:

bmax,min5
L

tan~m/2!@17sin~m/2!#
. ~A12!

If Ki is positive ~i.e., the quadrupole is defocusing!, then
b i5bmin andvice versa.

Since the energy dependence comes mainly from
phase advance and the beta function variation can be
glected, the coefficientt126

i is given by

t126
i '2r 12

i ~N2 i !
tan~m/2!

tan~c i !
. ~A13!

The spectral functions~12! can then be explicitly written:
t

c

t

e
e-

gs~k!'(
i 51

N

KiAb ibNsin~c i !

3Ag i

gN
S 11~N2 i !

tan~m/2!

tan~c i !
D sin~ksi !,

gc~k!'(
i 51

N

KiAb ibNsin~c i !Ag i

gN
S 11~N2 i !

tan~m/2!

tan~c i !
D

3@cos~ksi !21#. ~A14!

One can see that these functions have resonances at th
lowing wave numbers:

kL5p j 6m/2, ~A15!

where j is an integer. Only four resonances fit into the a
lowed banduku,p/L, the first resonance

k1L5m/2, ~A16!

the second resonance

k2L5p2m/2, ~A17!

and also the symmetrical ones for negativek. The values of
spectral functions at these resonances can be easily fo
Let us split the sum in Eq.~A14! in two parts, with odd index
i 52m21 and with even index i 52m, where
m51, . . . ,N/2 ~assuming thatN is even!. The values at the
first resonance are then

gc~k1!5sin~Nm/2!~vodd1veven!1cos~Nm/2!~wodd1weven!,

gs~k1!52cos~Nm/2!~vodd1veven!

1sin~Nm/2!~wodd1weven!. ~A18!

At the second resonance,

gc~k2!5sin~Nm/2!~2vodd1veven!

1cos~Nm/2!~2wodd1weven!,

gs~k2!52cos~Nm/2!~vodd2veven!

1sin~Nm/2!~wodd2weven!. ~A19!

Here

vodd'
1

2
KoddAboddbN (

m51

N/2 Ag2m21

gN
,

veven'
1

2
KevenAbevenbN (

m51

N/2 Ag2m

gN
, ~A20!

and



nd
d

o
s
h-
na

e
a

c

n

p-

.

th
ru

g

.
w-

e’’
M
-

ar

3570 56ANDREY SERY AND ALBAN MOSNIER
wodd'
1

2
tan~m/2!KoddAboddbN (

m51

N/2

~N22m11!Ag2m21

gN
,

weven'
1

2
tan~m/2!KevenAbevenbN (

m51

N/2

~N22m!Ag2m

gN
.

~A21!

The resonance values ofG(k) andG(k) are then the follow-
ing:

G~k1!5~vodd1veven!
21~wodd1weven!

2,

G~k2!5~vodd2veven!
21~wodd2weven!

2,

G~k1!5G~k2!52vodd
2 1veven

2 2wodd
2 1weven

2 . ~A22!

Behavior in the small vicinity of the peaks can also be fou
One can show finally that the peaks can be considere
rectangular ones with full width

Dk5
2p

NL
. ~A23!

APPENDIX B

We saw in the main text that from the spectral point
view an alignment procedure can be considered in term
evolution of spatial harmonics. For the ‘‘one-to-one’’ tec
niques the positions of several first quadrupoles of the li
after alignment do not follow exactly the algorithm~21!,
which describes evolution of harmonics. Nevertheless th
details of alignment procedures can also be taken into
count within a spectral approach.

It is more convenient in this case to start from

hx~ t !5T116xinj~ t !1(
i 51

N

dixi~ t !, ~B1!

where the injected angle is assumed to be zero. The spe
functions are given also by Eqs.~11! and ~18!, but they are
composed of parts, which are defined in a slightly differe
way than in the main text:

gc~k!5(
i 51

N

dicos~ksi ! and gs~k!5(
i 51

N

disin~ksi !. ~B2!

We start from the ‘‘one-to-one’’ by steering. Let us su
pose thatx(12) i is the position of thei th quadrupole just
before correction and it corresponds to a single harmonics
order to find the positions after correctionx(1)i , one should
apply first the algorithm~21! to x(12) i . It will give x(1)i

alg ,
which can be composed of two harmonics already. Then
injection position and the positions of the first two quad
poles should be specified in the following way:

xinj5x~1!05x~12 !0 , ~B3!

x~1!15x~1!1
alg 1~x~12 !02x~12 !1!S 11

2

LK1
D , ~B4!
.
as

f
of

c

se
c-

tral

t

In

e
-

x~1!25x~1!2
alg 1~x~12 !02x~12 !1!

1

LK1
. ~B5!

The dispersion after correction is then given by

hx5T116x~12 !01(
i 51

N

dix~1!i
alg

1~x~12 !02x~12 !1!Fd1S 11
2

LK1
D1

d2

LK1
G . ~B6!

The dispersive error will be finally given by the followin
expression:

^hx
2~ t !&52E

kmin

kmax2kmin
@P~k!G~k!1P~k!G~k!

1Pinj~k!Ginj~k!#
dk

2p
, ~B7!

where the spectral functionsG(k) andG(k) are based on Eq
~B2! and the additional functions are defined as the follo
ing:

Pinj~k!5L~s ini
2 1serr

2 !1ADtS 1

k2 1
1

kmax
2 D , ~B8!

Ginj~k!5q1
21q2

212~q1c1q2s!, ~B9!

where

q15T1161Fd1S 11
2

LK1
D1

d2

LK1
G@12cos~kL!#,

q25Fd1S 11
2

LK1
D1

d2

LK1
Gsin~kL!, ~B10!

and

c5gc~k!1r 2~k!gc~ k̃!,

s52gs~k!1r 2~k!gs~ k̃!. ~B11!

Similar consideration can be made for the ‘‘one-to-on
by quadrupole moving. If one has one harmonics of the BP
errors ai5cos(ksi1f), then the displacements after align
ment are given by Eq.~48!. First, in order to simplify calcu-
lations, let us rewrite Eq.~48! in the form that will give the
same answer for the dispersion, but will not have line
terms:

xi52cos~ksi1f!2
KL

2@11cos~kL!# S cos~p i !cos~ksi1f!

2cos~f!1
T126

LT116
@cos~f!1cos~kL1f!# D . ~B12!

One can see now that we can use Eq.~B1! with fictitious xinj
defined as

xinj5
KL

2@11cos~kL!# Fa0S T126

LT116
21D1a1

T126

LT116
G . ~B13!
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The final answer for the dispersive error will be given ag
by the expression~B7!, where the additional functions ar
defined as the following:

Pinj~k!5Lserr
2 . ~B14!

The functionGinj(k) is given by Eq.~B9! with the following
coefficients:

q152r 4~k!~T126/L2T116!2r 4~k!T126/L cos~kL!, ~B15!
.
in

ra
En
95

n

q252r 4~k!T126/L sin~kL!,

and

c52gc~k!1r 4~k!gc~ k̃!,

s52gs~k!2r 4~k!gs~ k̃!. ~B16!
.
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